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a b s t r a c t

Despite the extensive research during the last six decades the fundamental questions concerning the
role of steroids in the initiation of human parturition and origin and function of some steroids in
pregnancy were not definitely answered. Based on steroid metabolomic data found in the literature and
our so far unpublished results, we attempted to bring new insights concerning the role of steroids in the
sustaining and termination of human pregnancy, and predictive value of these substances for estimation
of term. We also aimed to explain enigmas concerning the biosynthesis of progesterone and its bioactive
catabolites considering the conjunctions between placental production of CRH, synthesis of bioactive
steroids produced by fetal adrenal, localization of placental oxidoreductases and sustaining of human
pregnancy. Evaluation of data available in the literature, including our recent findings as well as our new
etabolome
C–MS unpublished data indicates increasing progesterone synthesis and its concurrently increasing catabolism
with approaching parturition, confirms declining production of pregnancy sustaining 5�-pregnane
steroids providing uterine quiescence in late pregnancy, increased sulfation of further neuroinhibiting
and pregnancy sustaining steroids. In contrast to the established concept considering LDL cholesterol as
the primary substrate for progesterone synthesis in pregnancy, our data demonstrates the functioning of
alternative mechanism for progesterone synthesis, which is based on the utilization of fetal pregnenolone
sulfate for progesterone production in placenta. Close relationships were found between localization of

Abbreviations: 5�-DHT, 5�-dihydrotestosterone; 5�-DHP, 5�-dihydroprogesterone; ACTH, adrenocorticotropic hormone; AF, amniotic fluid; AKRs, aldo-keto reductases;
KR1C1, aldo-keto reductase family 1, member C1, 20�-hydroxysteroid dehydrogenase, hepatic dihydrodiol dehydrogenase; AKR1C2, aldo-keto reductase family 1, member
2, type III 3�-hydroxysteroid dehydrogenase; AKR1C3, aldo-keto reductase family 1, member C3, type II 3�-hydroxysteroid dehydrogenase; AKR1C4, aldo-keto reductase
amily 1, member C4, type I 3�-hydroxysteroid dehydrogenase; AKR1D1, 5�-reductase; ARSK, arylsulfatase K; CRH, corticotrophin releasing hormone; CRHBP, CRH binding
rotein; CNS, central nervous system; CYb5, cytochrome b5 enzyme; CYP11A1, cholesterol desmolase, cholesterol side chain cleavage enzyme; CYP11B1, 11� hydroxylase;
YP11B2, aldosterone synthase; CYP17A1, 17�-hydroxylase/17,20 lyase; CYP19A1, aromatase; CYP21A2, P450 21 hydroxylase; CYP3A4, glucocorticoid-inducible P450, tau-
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ehydroepiandrosterone; DHEA16�, 16�-hydroxydehydroepiandrosterone; DHEA7�, 7�-hydroxydehydroepiandrosterone; DHEA7�, 7�-hydroxydehydroepiandrosterone;
HEAS, dehydroepiandrosterone sulfate; DZ, definitive zone of the fetal adrenal; FZ, fetal zone of the fetal adrenal; GA, gestational age; GABAA-r, type-A �-aminobutyric
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placental oxidoreductases and consistently higher levels of sex hormones, neuroactive steroids and their
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metabolites in the oxidized form in the fetus and in the reduced form in the maternal compartment.
© 2010 Elsevier Ltd. All rights reserved.
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. Introduction

Despite the extensive research during the last six decades the
uestions concerning the role of steroids in the initiation of human
arturition and origin and function of some steroids in pregnancy
ere not definitely answered. Human parturition is unique [1] and

herefore the use of animal model is frequently inadequate. There-
ore the information contained in steroid metabolome in human
ody fluids may be helpful for a better understanding the physi-
logy of human pregnancy and parturition. Although the steroid
etabolome in maternal circulation was extensively studied, the

nformation is deficient concerning the metabolomic profiles in
uman fetal body fluids. In this study we attempted to review exist-

ng state of art in the steroid metabolomics focused on human late
regnancy. The data found in the literature will be reviewed as well
s our so far unpublished GC–MS results that were obtained in the
rame of our two recently published studies [2,3] in the group of
omen at labor from the 28th to 41st week of gestation. The latter
ata includes almost complete steroid metabolome in fetal umbil-

cal arterial) and venous blood as well as in the maternal venous
lood and amniotic fluid. The metabolomic profiles were recorded

n 12 women giving birth after the 38th week of gestation who
ere without perinatological complications and the group of 38
reterm births being selected so that the reasons in preterm labors
ere independent of the steroid status (for details see [2,3]).

Some of the mechanisms explaining the hormonal control of

rather connected to a changed expression of specific isoforms of
progesterone receptors than to a change in progesterone levels. In
addition to the increased circulating estradiol levels, the chang-
ing expression of specific isoforms of estradiol receptors probably
also contributes to the onset of labor [8]. From the further steroids,
cortisol may inhibit progesterone action in the regulation of 15-
hydroxyprostaglandin dehydrogenase expression at term [9].

In pregnancy and parturition a role of the most abundant neu-
roinhibiting reduced progesterone metabolite allopregnanolone
was suggested in rats [10]. Allopregnanolone, and probably also
some other steroids, operate via positive modulation of the type-A
�-aminobutyric acid receptors (GABAA-r) [11,12] on the mem-
branes of hypothalamic oxytocin-producing cells. However, the
role of allopregnanolone and further neuroactive steroids (NAS) in
the timing of human parturition is still unclear.

The levels of pregnane NAS are excessively increased in preg-
nant women [13] in comparison with those in non-pregnant
[14]. Besides GABAA-r, the polar conjugates of the reduced
3�/�-hydroxy-5�/�-reduced pregnane steroids are also active on
N-methyl-d-aspartate receptors (NMDA-r) showing positive and
negative modulation for the 5�- and 5�-isomers, respectively [15].
Although CNS possesses independent steroid production [16], the
peripherally produced NAS may pass the blood–brain barrier [17]
and influence the steroid metabolome in the CNS. NAS may also
operate at the peripheral level like allopregnanolone and proges-
terone, both attenuating myometrial contractions via the opening
regnancy sustaining and onset of parturition involve progesterone
ithdrawal at concurrently increasing estradiol production before

he onset of parturition [4,5]. However, progesterone levels in
uman maternal blood do not markedly change around parturition
6,7]. Regarding progesterone, the initiation of human delivery is
+
of voltage-dependent K -channels, contrary to estradiol, which is
their antagonist [18,19]. The NAS may be also produced locally,
exerting intracrine and paracrine effects. On the other hand, con-
jugated steroids may be easily transported by circulation in high
amounts from more distant sources. The reduced progesterone



116 M. Hill et al. / Journal of Steroid Biochemistry &

m
a
p

l
[
t
i
t
b

o
s
j
a

a
a
l
s
i
d
b

2

2
b

t
t
n
p
t
a
t
a
i
c
C
l
a

Fig. 1. Simplified scheme of steroidogenesis in human late pregnancy.

etabolites might also exert peripheral analgesic effects via block-
de of T-type calcium channels, which are responsible for pain
erception [20].

Besides non-genomic effects, reduced progesterone metabo-
ites, which are synthesized in large quantities in pregnancy
13,21–27], may also bind on nuclear receptors such as proges-
erone receptors [28] providing uterine quiescence. Some studies
ncluding ours reported decreasing production of pregnancy sus-
aining 5�-pregnane steroids that provide uterine quiescence via
inding to nuclear pregnane X-receptors [13,26,29–31].

The kinetics of irreversible catabolism of the bioactive steroids,
xidoreductive balances between active and inactive forms of
teroids [32] and balances between free steroids and their con-
ugates [33] may be crucial for the regulation of their biological
ctivity and consequently for the pregnancy sustaining.

Concerning the steroid metabolome in human body fluids, there
re four key steroidogenic organs such as fetal and maternal
drenal, placenta, fetal and maternal liver (Fig. 1, our so far unpub-
ished data). Considering the endocrine, autocrine and paracrine
teroid effects, the uterus and fetal membranes might be of a great
mportance [34]. However, the contribution of the steroids pro-
uced in these tissues to steroid metabolome in fetal and maternal
lood does not seem to be essential.

. Steroid metabolism in fetal and maternal adrenal

.1. The key role of placental CRH in the regulation of steroid
iosynthesis in pregnancy

The paramount mechanism controlling overall production of
he most of pregnancy steroids is based on placental produc-
ion of CRH (Fig. 1, our so far unpublished data) [35]. CRH in
on-pregnant subjects is a hypothalamic hormone controlling the
ituitary secretion of ACTH and, in turn, the production of corticos-
eroids in an adult adrenal. The hypothalamic–pituitary–adrenal
xis in these subjects is based on a negative feedback loop between
he final active hormone, ACTH and CRH. The situation in pregnancy
fter luteo-placental shift is different. CRH is primarily expressed

n human placenta and instead of the negative feedback loop
ortisol–ACTH–CRH; there is a positive one between cortisol and
RH, while the ACTH production stagnates. CRH directly stimu-

ates production of �5 steroid sulfates in the fetal zone of the fetal
drenal (FZ) [36,37] and cortisol synthesis in the transitional zone of
Molecular Biology 122 (2010) 114–132

the fetal adrenal (TZ) [38] via binding to ACTH receptors [39]. ACTH
receptor mRNA is localized in all cortical zones but its abundance
is higher in DZ (definitive zone) than in FZ [40]. The fetal adrenal
gland at term is almost the size of the fetal kidney and the FZ at
term produces steroids more abundantly than normally secreting
adrenal glands of the adult [35]. The C-19- and possibly also the
C-21 �5 steroids, originating in the FZ and being further processed
in placenta and liver, represent the largest fraction of steroids in
pregnancy [41–44]. However, progesterone is commonly consid-
ered to originate mainly in placenta from maternal LDL cholesterol
[7,45].

After midgestation, the TZ cells may have the capacity to syn-
thesize cortisol and be analogous to cells of the zona fasciculata
of the adult adrenal. By the 30th week of gestation, the defini-
tive zone of the fetal adrenal (DZ) and TZ begin to resemble the
adult zona glomerulosa and zona fasciculata, respectively [46]. The
FZ still producing conjugated C-19 �5 steroids is similar to the adult
zona reticularis but unlike the adult zona reticularis, the FZ produces
excessive amounts of conjugated C-21 �5 steroids, including sul-
fates of pregnenolone (PregS), 17-hydroxypregnenolone [35] and
androstenediol (Fig. 2, our so far unpublished data). As generally
accepted, the �5 steroid sulfates (originating in the FZ) serve as
precursors for the placental production of estradiol [36,37] and as
suggested in our recent study [2], possibly also for progesterone
synthesis.

The levels of CRH are extremely high in maternal and high in
the fetal blood [47]. The rising levels of human placental CRH in
maternal circulation in the last 4 weeks of pregnancy stimulate the
production of conjugated C-19- [36] and probably also the C-21 �5

steroids [2] in FZ in a dose-dependent manner. CRH is as effective
as ACTH at stimulating sulfated dehydroepiandrosterone (DHEAS)
production but is 70% less potent than ACTH at stimulating cortisol
production. Although CRH increases the expression of cholesterol
desmolase (CYP11A1, cholesterol side chain cleavage enzyme) it is
not mitogenic for fetal adrenal cortical cells [36].

It should be outlined that the excessive production of placen-
tal CRH is specific for primates and the boost in CRH production in
late pregnancy is specific only for human and great apes [48]. This
should be considered when addressing the initiation of human par-
turition and this is the primary reason for which the animal models
may not be optimal for investigation of human pregnancy. Only
human beings and great apes produce a circulating binding protein
for CRH (CRHBP), the levels of which fall at the end of pregnancy
thus increasing the bioavailability of CRH [49,50].

Despite the substantial alterations in the placental CRH produc-
tion in late pregnancy, the predictivity of the unstable CRH for an
estimation of term is relatively poor [51]. Nevertheless, the CRH
induced changes in the steroid metabolome may better predict the
approaching parturition. When using the simultaneous quantifica-
tion of the steroid metabolome in one sample by GC–MS or LC–MS
and multivariate approach for evaluation of the results obtained,
the cumulative effect of mutually strongly inter-correlated steroids
substantially improves the predictivity. This algorithm appears to
be less expensive and more informative. As demonstrated in our
recent study [3], the predictivity of the primary products of the FZ
for the onset of human parturition is high.

2.2. Steroid 17˛-hydroxylase/17,20 lyase (CYP17A1)

Besides stimulation of CYP11A1, CRH also stimulates 17�-
hydroxylase/17,20 lyase (CYP17A1) expression possessing both

17�-hydroxylase and 17,20-lyase activities [36]. CYP17A1 pro-
teins and mRNAs were detected only in FZ and TZ, not in the
DZ [52,53]. CYP17A1 also exhibits marked progesterone 16�-
hydroxylase activity in human steroidogenic cells including those
from the fetal adrenal [54]. CYP17A1 has extremely low C-17,20-
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Fig. 2. Profiles of conjugated sulfated �5 steroids in the plasma from the umbilical artery (UA), umbilical vein (UV) and maternal cubital vein (MV) and in amniotic fluid
(AF) according to the gestational age. The repeated measures ANOVA model was used for the evaluation of the relationships between steroid levels, GA and the type of body
fluid. The model consisted of within-subject factor body fluid (factor BF—four body fluids were investigated in each subject), subject factor (factor Subj), between-subject
factor gestational age (factor GA—the subjects were separated into 4 groups according to the GA) and body fluid × GA interaction (BF × GA interaction). The symbol w denotes
the week of gestation. Significant BF × GA interaction indicates that there is a significant difference between the dependences of the individual body fluids on GA. F-ratio
represents the Fisher’s statistic and p designates statistical significance for the factors and interaction. The symbols with error bars represent re-transformed means with
their 95% confidence intervals for individual body fluids (full circles, UA; full squares, UV; empty squares, MV; empty triangles, AF. The significance testing in the form of the
subgroup confidence intervals is for the interaction of body fluid (sample material) with GA. The 95% confidence intervals are computed using the least significant difference
multiple comparisons (p < 0.05). The confidence intervals, which do not overlap each other, denote significant difference between the respective subgroup means. Further
embedded table contains the multiple comparisons that are completed separately for the gestation week and for the sample material (body fluid). The symbol “≈” expresses
insignificant difference, while the symbol “>” means “significantly higher than”. The significance level was considered for p < 0.05. The horizontal line from the full circles
represents the mean level of the steroid in the luteal phase of the menstrual cycle. These so far unpublished data were obtained in the frame of our recently published studies
[2,3].
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yase activity toward C-21 �4 steroids and fails to convert these
ubstances to corresponding C-19 steroids [54]. However, also the
evels of sulfated C-21 �5 steroids are elevated in the maternal
lood [55] and excessively elevated in the fetal circulation in con-
rast to the situation in non-pregnant women (Fig. 2, our so far
npublished data), which indicates limited C-17,20-lyase activity

n the FZ also for C-21 �5 steroids.

.3. Steroid sulfotransferases and sulfatases

The human type 2A1 hydroxysteroid sulfotransferase
SULT2A1) displaying reactivity towards 3�/�-hydroxysteroids,
strogens, and 17-hydroxyl group of androgens is highly expressed
n the adrenal cortex [56]. TZ and FZ showed immunoreactivity
or SULT2A1, but not the DZ [53]. SULT2A1 enzyme activities
re independent of the gestational age (GA) [57]. In addition to
he SULT2A1 expression, the estrogen preferring sulfotransferase
SULT1E1) activity [58] and relatively high steroid sulfatase (STS)
mmunoreactivity were also reported in the adult adrenal gland
59].

.4. Activities of enzymes enrolled in the synthesis of corticoids

3�-Hydroxysteroid dehydrogenases/�(5 → 4)-isomerases
HSD3Bs) catalyzes the oxidative conversion of 3�-hydroxy-�5

teroids. HSD3B immunoreactivity is not detected in the fetal
drenal prior to 22 weeks of gestation, but becomes discernible in
he TZ and DZ after 23 weeks [52,53]. In late pregnancy, TZ and DZ
rovide the conversion of �5 steroids to 3-oxo-�4 precursors of
orticosteroids expressing type 2 HSD3B (HSD3B2) [60]. Early in
estation, only the �5 steroid production occurs in the TZ and FZ,
hich expresses CYP11A1 and CYP17A1 [52]. ACTH does not influ-

nce steroidogenesis in the FZ [61]. Like the HSD3B2, the enzymes
YP21A2 (P450 21 hydroxylase, or P450C-21), CYP11B1 (11�
ydroxylase or P450c11) and CYP11B2 (aldosterone synthase) are
ecessary for corticoid synthesis. CYP21A2 immunoreactivity is
inor in the DZ but is detectable in almost all cells in the TZ and

Z [53,62]. After 23 gestational weeks, the immunoreactivity for
YP21A2 is detected in all three zones [53]. TZ expressing CYP11A1,
YP17A1, HSD3B2, CYP21A2, CYP11B1 and type CYP11B2 has the
apacity to synthesize cortisol after midgestation [53,62] while
he DZ may synthesize mineralocorticoids, but not until near
erm [62]. CYP17A1, CYP11B1, and CYP11B2 immunoreactivities
re present in the TZ and FZ but absent in the DZ but [62]. Later
n gestation, the DZ produces mineralocorticoids, TZ produces
lucocorticoids and the FZ continues to produce �5 steroids [52].

Human adrenal glands also possesses 11�-hydroxysteroid
ehydrogenase (HSD11B) activity catalyzing inactivation of gluco-
orticoids [63].

.5. Adrenal C-3, C-17 and C-20 oxidoreductive conversions

HSDs, catalyzing reversible C-3, C-17 and C-20 oxidoreductive
nter-conversions belong to either the short-chain dehydroge-
ases/reductases (SDRs) or the aldo-keto reductases (AKRs).
everal SDRs are active in the adrenals.

The type 11 17�-HSD (HSD17B11) 3(� → �)-hydroxysteroid
pimerase prefers the oxidative conversion converting 5�-
ndrostan-3�,17�-diol to androsterone [64,65].

Type 6 17�-HSD (HSD17B6) possessing both oxidoreductase
nd 3(� → �)-hydroxysteroid epimerase activities acts on both

-19 and C-21 3�-hydroxysteroids. Because bioactive steroids
ommonly exert their effect in a stereo-specific manner, epimerase
ctivity may be of biological importance [66].

Type 7 17�-HSD (HSD17B7) preferably operates as reduc-
ase and catalyzes the reduction of the oxo-group in either
Molecular Biology 122 (2010) 114–132

17- or 3-position of the substrate to the corresponding 17�-
or 3�-hydroxy-counterparts, respectively. HSD17B7 exhibits also
minor 3�HSD-like activity towards progesterone and 20�-
dihydroprogesterone (Prog20�) [67]. Like the HSD17B7 the type 12
17�-HSD (HSD17B12) also prefers the reductive direction catalyz-
ing the conversion of estrone into estradiol and was also detected
in the adrenal [68].

2.6. 16˛-Hydroxylation

16�-Hydroxylation being primarily provided by cytochrome
P450 CYP3A7 enzyme probably regulates the levels of precursors
for the synthesis of hormonally active steroids. The CYP3A7 is also
active in the fetal adrenal but the levels of the CYP3A7 isozyme in
fetal adrenals are only 33% of that in fetal livers [69,70].

2.7. Differences in enzyme expression between fetal and adult
adrenal

While the expression of some enzymes like CYP17A1, 21-
hydroxylase, 11� hydroxylase, and CYP11B2 do not significantly
differ between the fetal adrenal in late pregnancy and adult adrenal,
others show pronounced differences. CYP11A1, cytochrome b5
enzyme (CYb5) and P450 cytochrome oxidoreductase (POR) mRNA
expression is nearly twice higher in fetal than in adult adrenal,
and SULT2A1 transcript shows even 13-fold higher levels in the
fetal adrenal. Alternatively, HSD3B2 mRNA expression in midges-
tation is 127-fold lower than that in the adult adrenal. It is evident
that increased expression of CYP11A1 in fetal adrenal reflects high
cholesterol utilization for steroidogenesis. CYb5 and POR cofactors
may stimulate CYP17A1 activity and thus the production of sulfated
�5 steroids in the fetal adrenal [71]. Markedly higher expres-
sion of SULT2A1 reflect high claim for steroid sulfation enabling
a production of sufficiently soluble precursors, which can be easily
transported in excessive amounts by circulation for the placental
synthesis of sex hormones. Alternatively, the lack of HSD3B2 in
the FZ provides preferential synthesis of the �5 C-21 steroids over
cortisol production.

3. Steroid metabolism in fetal and maternal liver

The activities of CYP11A1 and HSD3Bs in the fetal liver are neg-
ligible or even absent in human pregnancy [72]. However, other
steroidogenic enzymes in the maternal and particularly in the fetal
liver may substantially influence the steroid metabolome in both
fetal and maternal circulation.

3.1. Liver 16˛-hydroxylation and estrogen formation

16�-Hydroxylation is provided by cytochrome P450 CYP3A7
enzyme that is pronouncedly expressed in the microsomal fraction
from fetal liver [70,73] although this activity in the adult liver is neg-
ligible [43]. While CYP3A4 and CYP3A5 enzymes are responsible
for the production of 7�-hydroxy-DHEA (DHEA7�), 7�-hydroxy-
DHEA (DHEA7�), and 16�-hydroxy-DHEA (DHEA16�) in the adult
liver microsomes, the fetal/neonatal CYP3A7 produces DHEA16�
and DHEA7� [74].

The fetal liver is the primary source of 16�-hydroxy-metabolites
of �5 steroids, as also documented by consistently higher levels
of 16�-hydroxy-metabolites of the substances in fetal circulation

when compared with the maternal compartment [75,76], con-
firmed also by our unpublished results (Fig. 3). However, some
authors [54,75] suggested 16�-hydroxy-progesterone (Prog16�)
synthesis from progesterone catalyzed by CYP17A1 localized in the
placenta.
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ig. 3. Profiles of the ratios of 16�-hydroxysteroids to the corresponding 16-deoxy
ubital vein (MV) and in amniotic fluid (AF) in preterm and normal labor. The draw
n the frame of our recently published studies [2,3].

The levels of 16�-hydroxysteroids in the fetal blood increase
rom the second to the third trimester [61,75,76] and rise
onsiderably at delivery [77]. In addition, the ratios of 16�-
ydroxy-metabolites to 16-deoxy-steroids significantly increased
fter 30th week of gestation indicating increasing catabolism of
he sex hormone precursors in the fetal liver [78] (Fig. 3, our so far
npublished data).

According to the Diczfalusy’s concept [79], the DHEAS from the
etal adrenals is hydroxylated at the 16�-position in the fetal liver
nd then aromatized to estriol in the placenta and most of this huge
mount of estriol exits the placenta into the uterine vasculature and
aternal circulation.
The inhibitory effect of sulfated DHEA16� on estrogen pro-

uction is minimal at low DHEAS concentrations (favoring the
ecretion of estrone and estradiol) and is greatly enhanced
t concentrations of DHEAS that induced maximum estrone

nd estradiol secretions. In trophoblastic cells, the metabolism
f DHEAS can modulate estriol secretion, and the metabolism
f sulfated DHEA16� can modulate the secretion of estrone
nd estradiol [80]. However, whilst each substrate appeared
ids in the plasma from the umbilical artery (UA), umbilical vein (UV) and maternal
nd symbols are the same as for Fig. 2. These so far unpublished data were obtained

to inhibit the aromatization of the other, the 16-deoxy-C-19
steroids are more potent inhibitors [81]. 16�-Hydroxy-metabolites
of testosterone and androstenedione are only poor substrates
for the placental aromatase (CYP19A1) in contrast to the
corresponding 16-deoxy-steroids [82] and the initial rates of
estrogen formation are higher for the 16-deoxy-C-19 steroids
[81].

Lee et al. [83] reported that at a physiologically relevant low
substrate concentration (10 nmol/L), CYP3A7 had a strong cat-
alytic activity for the 16�-hydroxylation of estrone, and the ratio
of its 16�-hydroxylation to 2-hydroxylation was 107%. How-
ever, when estradiol was the substrate, CYP3A7 had only very
weak catalytic activity for 16�-hydroxylation, and the ratio of its
16�-hydroxylation to 2-hydroxylation was 10–33%. Moreover, the
maximum velocity/K(m) ratio was more than 100 times higher for
the 16�-hydroxylation of estrone than for estradiol. This prompts

that estrone originating in placenta from androstenedione is trans-
ported by circulation into the fetal liver, where may be further
conjugated by sulfatases and glucoronidases, converted to estra-
diol by reductive and SDRs and AKR1Cs. Estradiol of the placental
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ig. 4. Profiles of 5�-dihydroprogesterone and 5�-dihydroprogesterone and their
nd maternal cubital vein (MV) and in amniotic fluid (AF) in preterm and normal la
ere obtained in the frame of our two recently published studies [2,3].

nd liver origin may be also sulfated, then the free and conjugated
strone may be 16�-hydroxylated by CYP3A7 (the most potent
K1C4 is independent of the substrate sulfation status) and finally,

iver SDRs and AKR1Cs may catalyze further conversion of the free

nd conjugated (in C-3 position) 16�-hydroxy-estrone to free and
onjugated estriol.

Like in the case of CYP3A7, the adult liver exhibits little CYP19A1
ctivities but the fetal liver is capable to extensively aromatize var-
ous C-19 steroids to estrogens [84,85] and the CYP19A1 activity in
to progesterone in the plasma from the umbilical artery (UA), umbilical vein (UV)
he drawings and symbols are the same as for Fig. 2. These so far unpublished data

the fetal hepatocytes appears to be up regulated by glucocorticoids
[86].

3.2. C-3, C-17 and C-20 oxidoreductive conversions
Because active hydroxysteroids generally exert their effect in
a stereo-specific manner, epimerase activity may potentially play
an important role in regulating the biological activities of various
steroids.



istry &

d
d
c
A
r
t
c
t
r
f
1
r
e
t
e
t
L
o
o
c
[

w
g
1
e
t

e
m
t
d
a
1
i
G
3
a
r
a
G
5

c
c
[

3

N
w

o
d
i
v
o
t
f
t
w
t

a

M. Hill et al. / Journal of Steroid Biochem

Human liver contains all isoforms (AKR1C1–AKR1C4) of dihy-
rodiol dehydrogenase with 20�-, 17�-, 3�- or 3�-hydroxysteroid
ehydrogenase-like activity [87–89]. Activities of AKR1Cs could
ontrol occupancy of the androgen- and GABAA-r [90]. In vivo, all
KR1Cs preferentially work as reductases [91] and are capable to
educe estrone and progesterone to estradiol and Prog20�, respec-
ively. On the other hand, AKR1Cs may decrease the neurosteroid
oncentrations by inactivating allopregnanolone and eliminating
he precursors like progesterone from the synthetic pathways via
eduction of the 20-oxo-steroid group [32,92]. The AKR1C2 pre-
erring 3�-reduction over the 3�-reduction may catalyze 3�-,
7�- and 20�-HSD reactions [32,89,92,93]. AKR1C3 catalyze the
eduction of 5�-dihydrotestosterone (5�-DHT), androstenedione,
strone and progesterone to produce 5�-androstan-3�,17�-diol,
estosterone, estradiol and Prog20�, respectively [88]. AKR1C4, the
xpression of which is limited to the liver [32,94,95], catalyzes
he transformation of the 5�-DHT into 5�-androstan-3�,17�-diol.
iver specific AKR1C4 shows superior catalytic efficiency versus the
ther isoforms. This efficiency exceeded those obtained with the
ther isoforms by 10–30-fold. In contrast to the other isoforms, the
atalytic efficiency for AKR1C4 is unaffected by steroid conjugation
89].

Two liver SDRs, HSD17B7 and HSD17B12, also preferentially
ork as reductases. HSD17B7 preferring the reduction of the oxo-

roup in 20-, 17- or 3-position to the corresponding 20�-hydroxy-,
7�-hydroxy- or 3�-hydroxy-counterparts is also significantly
xpressed in the liver [67,96] as well as HSD17B12 catalyzing the
ransformation of estrone into estradiol [68].

HSD17B2, HSD17B10 and HSD17B11, which are also highly
xpressed in the liver, prefer the oxidative direction. HSD17B2
ay contribute to formation of 20-oxo- and 17-oxo-steroids from

heir 20�- and 17�-counterparts [42]. HSD17B6 prefers oxidore-
uctase and 3(� → �)-hydroxysteroid epimerase activities and
cts on both C-19 and C-21 3�-hydroxysteroids [66]. Type 10
7�-HSD (HSD17B10) being abundantly expressed in the liver,

s capable of catalyzing the oxidation of steroid modulators of
ABAA-r [97]. HSD17B10 catalyzes the oxidation of 5�-androstan-
�,17�-diol to 5�-DHT [98] and conversion of allopregnanolone
nd allotetrahydrodeoxycorticosterone (3�,5�-THDOC) to the cor-
esponding inactive 3-oxo-steroids. The catalysis of HSD17B10
ppears to be essential for maintaining normal functions of
ABA-ergic neurons [99]. Finally, the HSD17B11 [64] can convert
�-androstan-3�,17�-diol to androsterone [64,65].

Commonly, 20�-hydroxysteroids are considered as inactive
atabolites. However, 20�-dihydropregnenolone relax the tonic
ontractions induced by KCl in a concentration-dependent way
100].

.3. 5˛/ˇ-Reductases

5�- and 5�-Reductions are important for the biosynthesis of
AS. Conjugation of the androgens occurs extensively in the liver
hich has high activity of 5�- and 5�-reductases [101,102].

There are two isoforms of 5�-reductase, with a limited degree
f homology, different biochemical properties and distinct tissue
istribution. Type 1 5�-reductase (SRD5A1) is widely distributed

n the body, with the highest levels in the liver. SRD5A1 con-
erts testosterone into 5�-dihydrotestosterone and progesterone
r corticosterone into their corresponding 5�-3-oxo-steroids. In
he androgen-dependent structures, 5�-DHT is almost exclusively
ormed by 5�-reductase type 2 (SRD5A2) [103]. In the peripheral

issues, including the liver, SRD5A1 and reductive 3�-HSD isoforms
ork consecutively to eliminate the androgens and protect against

he hormone excess [104].
5�-Reductase (AKR1D1) belonging to AKRs, efficiently cat-

lyzes the reduction of both C-19 and C-21 3-oxo-�4 steroids to
Molecular Biology 122 (2010) 114–132 121

the corresponding 5�-reduced metabolites. 11�-Hydroxy-group in
corticoids hinders the transformation [102].

The higher levels of several 5�-reduced progesterone
metabolites in the fetus than in maternal compartment
(Figs. 4B, D and 5C, D) (our unpublished data) indicate higher
placental expression of AKR1D1 towards the fetal compart-
ment and/or higher expression of AKR1D1 in the fetal liver.
The latter possibility appears to be more likely because both
5�-pregnanolone isomers display lower levels in the blood from
umbilical vein (UV) than in blood from the umbilical artery (UA)
(Fig. 5C and D, our so far unpublished data). In addition, the ratio of
5�-dihydroprogesterone (5�-DHP) to progesterone is significantly
higher in UA than in UV (Fig. 4D, our so far unpublished data).

3.4. Balance between polar conjugates and unconjugated steroids

The balance between the sulfated and unsulfated NAS may be
decisively influenced by the activities of liver sulfatases, sulfo-
transferases and perhaps also the glucuronosyltransferases. The
pregnane and androstane 5�/�-reduced metabolites being fre-
quently neuroactive are readily sulfated in the liver. As already
mentioned, the balances between free steroids and their conju-
gates [33] may be crucial for the regulation of their biological
activity and consequently for the sustaining of pregnancy. The
5�/�-reduced metabolites with a hydroxyl in the 3�-position pos-
itively modulate GABAA-r. Their sulfates operate in the opposite
way, though on different binding sites. Sulfation may also decrease
the concentration of unconjugated NAS, the polarity of which is
more favorable for crossing the blood–brain barrier. The mod-
ulation efficiencies of the conjugated neurosteroids on GABAA-r
may reach about 1/10 of those for the corresponding unconju-
gated substances [33]. Nonetheless, in maternal circulation the
concentrations of conjugated pregnane steroids are about two
orders of magnitude higher when compared with their uncon-
jugated analogues. Conjugation is a prerequisite for the activity
of 3�/�-hydroxy-5�/�-reduced pregnane steroids on N-methyl-
d-aspartate receptors (NMDA-r) showing positive and negative
modulation for the 5�- and 5�-isomers, which are neuroactivat-
ing and neuroinhibiting substances, respectively [15]. Finally, the
sulfation might influence the activity and/or availability of the
peripherally active pregnancy sustaining steroids like the 5�/�-
reduced pregnane and androstane steroids but may also facilitate
their transport by circulation. However, even in these cases, the sul-
fation rather shift the biological activity towards induction of labor,
catabolizing the 5�-reduced steroids that provide uterine quies-
cence via pregnane X-type receptors [29] and allopregnanolone
that relaxes myometrium through voltage-dependent K+ channels
[105].

Our previous [13] and current data consistently show rising
sulfation of all pregnanolone isomers including neuroinhibiting
GABA-ergic substances in late pregnancy (Fig. 5E–H, our so far
unpublished data).

The sulfotransferase SULT2A1 is highly expressed in human liver
[56,106–108]. In the fetal liver, SULT2A1 activity exhibits remark-
able inter-individual variability, which may be the cause for an
absent correlation with the GA [57]. Liver UDP glucuronosyltrans-
ferase 2B7 (UGT2B7) catalyzes the glucuronidation of bile acid
substrates but also the 3�-hydroxylated androgenic steroids, and
17�-estrogens at very high rates [109].

The sulfotransferase enzyme SULT1E1 has the lowest K(m) val-
ues for estrogens and catecholestrogens of the known human SULT

isoforms [110]. SULT1E1 is responsible for the sulfation and inacti-
vation of estradiol at physiological concentrations. The enhanced
SULT1E1 activity may have a role in inhibiting GH-stimulated
STAT5b phosphorylation and IGF-1 synthesis via the sulfation and
inactivation of estradiol [111]. SULT1E1 may also play an impor-
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ig. 5. Profiles of unconjugated pregnanolone isomers and ratios of conjugated p
mbilical artery (UA), umbilical vein (UV) and maternal cubital vein (MV) and in am
or Fig. 2. These so far unpublished data were obtained in the frame of our recently

ant role in protecting peripheral tissues from possible excessive
strogenic effects [58].

Besides placenta, also the liver shows strong expression of STS
112]. Although Warren and French [113] reported about four times
ess activity for DHEAS hydrolysis in human liver when compared

ith placenta, Selcer et al. reported comparable STS immunore-
ctivity in these tissues [112]. In contrast to placenta where the
rylsulfatase K (ARSK) is not expressed, this enzyme might con-
ribute to the hydrolysis of steroid sulfates in the liver [114].

.5. Inactive steroid catabolites and prediction of term

Taking into account the simple availability of maternal blood in
ontrast to the fetal blood and amniotic fluid, the GA-predicting
teroids in maternal plasma are of greatest interest. The inactive
atabolites of sulfated �5 steroids produced by the FZ or pla-
ental estrogens frequently exhibit even better predictivity for
n estimation of GA that the parent steroids. These catabolites

ppear to be the end products of the steroid metabolism, the
iosynthesis of which is readily catalyzed by the liver enzymes.
or instance, the excellent predictivity was recorded for con-
ugated 16�-hydroxy-metabolites of �5 steroids and estrogens
Fig. 6, our so far unpublished data), polar conjugates of 5�/�-
nolone isomers to corresponding unconjugated steroids in the plasma from the
fluid (AF) in preterm and normal labor. The drawings and symbols are the same as
hed studies [2,3].

reduced C-19 steroids (Fig. 7A–C, our so far unpublished data)
and some 5-androstene-3�,7�/�,17�/oxo-steroids (Fig. 7D–F, our
so far unpublished data) [3]. Moreover, an acceleration of 16�-
and possibly also 7�-hydroxylation was reported with approaching
term [61,75,76].

4. Transport of steroid sulfates into the placenta

The transport of steroid sulfates from the fetal circulation into
the placental cells (where they are further metabolized) appears to
be mediated by an organic anion transporter OAT-4, which is local-
ized in the cytotrophoblast membranes and at the basal surface of
the syncytiotrophoblast [115] (Fig. 8, our so far unpublished data).
The data indicates the transport of steroid conjugates between the
fetal and maternal compartment without preceding hydrolysis.

5. Steroid metabolism in placenta
Sex hormones produced by the placenta play a key role in
the endocrine control of pregnancy and parturition. Placental
CRH stimulates the production of estradiol in a time- and dose-
dependent manner and also the mRNA levels of the key enzymes for
estrogen synthesis such as CYP19A1, type 1 17�-HSD (HSD17B1)
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116] as well as enzymes involved in progesterone synthesis like
ype 1 3�-HSD (HSD3B1) and CYP11A1 [117].

.1. Cholesterol desmolase in placenta

In contrast to other tissues producing cholesterol, placenta
acks short-term modulation of steroid synthesis. In this tissue,
he electron supply to CYP11A1 limits the conversion rate per-

itting pregnenolone synthesis to proceed at only 16% maximum
elocity. Thus, the mitochondria have a near-saturating choles-
erol concentration for CYP11A1, likely provided by the StAR-like
rotein MLN64. Cholesterol translocation to the CYP11A1 is not
ritical for placental progesterone synthesis and the subsequent
regnenolone conversion to progesterone [118].

.2. Steroid sulfatases and placental production of sex hormones

The principal metabolic step preceding further placental
etabolism of sulfated �5 steroids originating in FZ is their desul-

ation being provided by the placental STS, which is localized in
he endoplasmic reticulum [119]. The placental STS expression in
regnancy explicitly outweighs the production in other tissues [58].
TS allows access of DHEA to the HSD3B1 and CYP19A1 within the
yncytiotrophoblast layer and conversion to estrogens [120]. Pla-
ental STS is independent of substrate concentration [121] and of
A [122–124].

.3. 3ˇ-Hydroxysteroid dehydrogenase activity

HSD3B1 is necessary for the placental synthesis of progesterone
nd C-19 3-oxo-4-ene steroids. The latter substances are further
etabolized to estrogens [60,125]. HSD3B1 placental activity is

redominantly located in the syncytiotrophoblast and intermedi-
te trophoblast cells [126,127]. The specific activities of HSD3Bs for
-21 steroids in mitochondrial and microsomal preparations from
uman term placenta are about two times higher than for the C-

9 steroids [128]. Like in the case of sulfatase activity, placental
SD3B1 activities are constant throughout the human gestation

129,122,123] and around parturition [124,130]. Progesterone and
HEAS may cause marked HSD3Bs inhibition in physiological con-
itions [121,131].
umbilical vein (UV) and maternal cubital vein (MV) and in amniotic fluid (AF) in
far unpublished data were obtained in the frame of our recently published studies

5.4. Estrogen formation

Placenta is the primary site of estrogen formation in pregnancy.
CYP19A1 catalyzing the last steps of estrogen biosynthesis from �4

C-19 steroids is abundantly expressed in syncytiotrophoblast [132].
Estrogens regulate their own synthesis by the product inhibition.
The substrate inhibition is more apparent for 16-deoxy-estrogens
than for their 16�-hydroxy-metabolites [133]. 16-Deoxy- and 16-
hydroxy-C-19 substrates bind at separate, but interactive sites and
each substrate on binding inhibits the aromatization of the other
[134,135].

CYP19A1 activity strongly depends on GA. The increase in estra-
diol levels in maternal blood from the 2nd to the 3rd trimester
is greater than that of the placental weight and there is signifi-
cantly higher placental CYP19A1 activity in the 3rd trimester than
in the 2nd trimester [122]. The aforementioned results as well as
our recent data [3] indicate high predictivity of parturition onset
for some estrogens (Fig. 9, our so far unpublished data).

5.5. 16˛-Hydroxylation

Although the CYP3A7 is primarily expressed in the fetal liver, its
activity was also found in the placenta. The amounts of placental
and endometrial CYP3A7 mRNA and protein substantially increase
from the first to the second trimester of pregnancy [73].

5.6. 5˛/ˇ-Reductases

The pioneer studies on placental 5�-reductase [129] reported
in vitro synthesis of 5�-reduced pregnanes [3H]5�-pregnane-
3,20-dione and [3H]3�-hydroxy-5�-pregnan-20-one from
[3H]progesterone by placental tissue. 5�-Reduced steroids,
including allopregnanolone, suppress neuronal activity and may
have neuroprotective effects in the fetus. Placental expression of
both isoenzymes increased with advancing gestation. Placental
5�-reductases may provide precursors for allopregnanolone

synthesis in fetal brain [136].

AKR1D1 is primarily expressed in the liver but its activity was
also detected in other tissues including placenta [30]. The proges-
terone metabolite 5�-dihydroprogesterone (5�-DHP) is a potent
tocolytic. Acute in vitro treatment with 5�-DHP causes rapid uter-
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Fig. 7. Profiles of three conjugated 3�/�-hydroxy-5�/�-androstane-17-ones and some 5-
(UA), umbilical vein (UV) and maternal cubital vein (MV) and in amniotic fluid (AF) in pre
so far unpublished data were obtained in the frame of our recently published studies [2,3

Fig. 8. Transmission electron micrograph of the human placenta; S, syncytiotro-
phoblast; C, cytotrophoblast; Ca, fetal villous capillary; bar, 2 �m (our so far
unpublished data).
androstene-3�, 7�/�,17�/17-oxo-steroids in the plasma from the umbilical artery
term and normal labor. The drawings and symbols are the same as for Fig. 2. These
].

ine relaxation that is not mediated by pregnane X-type receptors
(PXR) but the 5�-reduced metabolites of progesterone may also act
chronically in pregnancy through a PXR-mediated mechanism [29].
In the placenta and myometrium, relative expression of AKR1D1
decreases in association with labor by about 2-fold and 10-fold,
respectively [30]. In contrast to the turnover of progesterone to 5�-
DHP reflecting 5�-reductase activity which remains stable (Fig. 4C,
our so far unpublished data), the conversion of progesterone to
5�-DHP reflecting 5�-reductase activity decreases later in preg-
nancy [13,26,30] (Fig. 4D, our so far unpublished data). This data
is consistent with a possible role for 5�-DHP in the onset of
spontaneous human parturition. The placental expression of 5�-
reductase mRNA is about two orders of magnitude higher than in
myometrium and about three orders of magnitude higher than in
chorion and amnion [30].
5.7. Steroid sulfotransferase

SULT2B1 catalyzing sulfation of DHEA but not estradiol is
present in syncytiotrophoblast [107,108,137,138] while SULT1E1
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ig. 9. Profiles of free and conjugated estrogens in the plasma from the umbilical a
n preterm and normal labor. The drawings and symbols are the same as for Fig. 2.
tudies [2,3]. These so far unpublished data were obtained in the frame of our recen

nd SULT2A1 show negligible functional activity in placental tis-
ues [139], which means that estrogens are sulfated in an extra
lacental way, most probably in the liver.
.8. Reversible C-3, C-11, C-17 and C-20 oxidoreductive
nter-conversions in placenta

Placenta expresses various dehydrogenases belonging to SDRs
nd AKRs. From the SDRs, the cytoplasmic HSD17B1 is highly
UA), umbilical vein (UV) and maternal cubital vein (MV) and in amniotic fluid (AF)
so far unpublished data were obtained in the frame of our two recently published
blished studies [2,3].

expressed in syncytiotrophoblast [42]. Besides catalyzing the con-
version of estrone and progesterone to estradiol and Prog20�,
respectively, HSD17B1 may also catalyze the formation of
5-androstene-3�,17�-diol from DHEA [140,141]. Syncytiotro-
phoblast, coming directly into contact with maternal blood,

converts estrone to estradiol. In contrast to type HSD17B1 mRNA,
type HSD17B2 mRNA is not detectable in cell cultures of human
cytotrophoblast or syncytiotrophoblast [142]. Besides HSD17B1,
the AKR1 member C3 enzyme (AKR1C3), HSD17B7 and HSD17B12
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Fig. 10. Profile of progesterone in the plasma from the umbilical artery (UA), umbil-
ical vein (UV) and maternal cubital vein (MV) and in amniotic fluid (AF) in preterm
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ay also catalyze progesterone deactivation to Prog20� and con-
ersion of inactive estrone to bioactive estradiol [68,88,132,141].

AKR1C3 is pluripotent widely distributed enzyme catalyzing
he conversion of aldehydes and ketones to alcohols [143,144].
KR1C3 functions as a bi-directional 3�-, 17�- and 20�-HSD and
an interconvert active androgens, estrogens and progestins with
heir cognate inactive metabolites, however, like other AKR1Cs in
ivo, AKR1C3 preferentially works as a reductase [88,91,143].

Regarding 3�-pregnanolone isomers positively modulating
ABAA-r, the oxidoreductive conversion of 20-oxo- to 20�-
ydroxy-group or a modification of the C17,20 side chain
esults in a selective (subtype dependent) reduction of positive
llosteric modulation of GABAA-r (about 6-fold) [145]. In addition,
he reversible oxidoreductive interconversion of 3�-hydroxy/3-
xo/3�-hydroxy-5�/�-reduced pregnane and androstane steroids
ay influence the ratio of neuroinhibiting 3�-hydroxy-5�/�-

educed metabolites, which are allosteric positive modulators
f GABAA-r, to the corresponding 3-oxo-metabolites and 3�-
ydroxy-metabolites. The latter ones are biologically inactive but
ompete with the 3�-hydroxy-isomers for the active sites on the
eceptors [146].

In contrast to the aforementioned enzymes, the HSD17B2
refers the oxidative direction catalyzing the progesterone biosyn-
hesis from inactive Prog20� as well as the conversion of bioactive
stradiol to biologically inactive estrone [42]. The site of expres-
ion of HSD17B2 was identified in two studies, either in endothelial
ells of fetal capillaries and some stem villous vessels [42] or in
ndothelial cells of villous arteries and arterioles [147]. Moghrabi
t al. suggested a protective role of the HSD17B2 from the excess
f bioactive estrogens and androgens in the fetus [42]. Besides
SD17B2, the type 14 17�-HSD (HSD17B14) a member of SDRs may
lso convert estradiol to estrone and 5-androstene-3�,17�-diol to
HEA [147].

The metabolism of placental sex steroids in the reductive direc-
ion increases as pregnancy advances and significantly rises during
uman parturition [129,148]. This phenomenon may be of an

mportance in the mechanism of initiation and continuation of
abor and might indicate a mechanism of progesterone withdrawal
n association with the onset of human parturition.

HSD11B1 expression is abundant in syncytiotrophoblast
icrovillus membranes juxta the maternal circulation whereas
SD11B2 expression is extensive throughout the remainder of

he syncytiotrophoblast, including the basal cell membrane and
pithelial basal lamina [149]. HSD11B1 expression is constant, but
he expression of HSD11B2 in the placenta increases significantly
ith GA. The adaptation of HSD11B2 activity prevents the increas-

ng maternal cortisol concentrations from transplacental passage
150].

Distribution of placental oxidoreductases and sources of pro-
esterone, estrogens and neuroactive steroids in pregnancy.

As indicated by growing progesterone levels in UV (Fig. 10, our so
ar unpublished data), placental production of progesterone proba-
ly increases shortly before termination of pregnancy but its levels

n UA, maternal cubital vein (MV), and amniotic fluid (AF) remain
onstant. This means that there should be concurrently increasing
rogesterone catabolism in this period.

Paradoxically, although progesterone is the most important
teroid in human pregnancy there are a lot of peculiarities and con-
radictions regarding its biosynthesis. As already mentioned, the
Z is analogous to adult zona reticularis. However, while both FZ
nd zona reticularis produce large amounts of DHEAS, the extensive

roduction of PregS is specific for FZ. This substantial dissimilar-

ty between FZ and zona reticularis remains unexplained. Although,
HEAS from the FZ is generally accepted as the substrate for pla-
ental estrogen synthesis, the physiological role of PregS in human
regnancy is unknown.
and normal labor. The drawings and symbols are the same as for Fig. 2. These so
far unpublished data were obtained in the frame of our recently published studies
[2,3].

On the other hand, the maternal LDL cholesterol is consid-
ered to be a single substrate for placental progesterone synthesis
[7,45], although the conversion of cholesterol/sulfate to preg-
nenolone/sulfate is the rate limiting step but not the cholesterol
transport to active sites like in extra placental tissues. It is gener-
ally accepted that the activities of STS and HSD3B1 are enormous in
comparison with other human tissues and being independent of GA
are capable to readily convert DHEAS to estrogens. Inconsistently,
the fate of PregS was not considered although its concentrations
in late pregnancy are at least the same as DHEAS levels. Whereas
DHEAS easily penetrates to the active sites in placenta being desul-
fated and converted to androstenedione and testosterone, there is
no reason for PregS to act differently. Neither STS nor HSD3B1 activ-
ities are rate limiting for placental progesterone synthesis [118].
Therefore, it may be more expediential to utilize fetal PregS instead
of the necessity to synthesize total maternal progesterone de novo
from maternal LDL cholesterol.

The progesterone is vital for pregnancy sustaining and so there
may be independent sources for its production. Whereas the con-
version of maternal LDL cholesterol may be the first of them, there
is no reason for placenta to reject processing of pregnenolone sul-
fate in the same way as DHEAS, obviously, except for the final step,
i.e. estrogen synthesis. The former source provides stability of pro-
gesterone production in the cases where the steroid production
in the FZ fails, however, the latter may substantially contribute
to the progesterone production. As our data indicates, the rise in
production of �5 steroids with approaching labor is linked to rise
of progesterone levels in UV but not in other body fluids. This
data indicates that primarily placental and perhaps also the liver
oxidoreductases may readily convert progesterone to its metabo-

lite Prog20� and vice versa and that the different location of the
reductase- or oxidoreductase-preferring isoforms in placental tis-
sues may be decisive for the reductive or oxidative status of steroid
metabolome in mother and fetus. Not only the progesterone levels,
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Table 1
Correlations (after power transformation to Gaussian distribution and constant
variance) between progesterone (Prog), 20�-dihydroprogesterone (Prog20�), and
20�-dihydroprogesterone polar conjugates (Prog20�C) in umbilical venous blood
(UV) and maternal venous blood (MV); Pearson’s and partial correlations (with
adjustment of all variables in the correlation matrix to constant except the pair
under investigation) are above and below the diagonal, respectively.

Table 2
Correlations (after power transformation to Gaussian distribution and constant variance)
polar conjugates (E2C), in umbilical venous blood (UV) and maternal venous blood (MV); P
matrix to constant except the pair under investigation) are above and below the diagona
Molecular Biology 122 (2010) 114–132 127

but also the concentration of estrogens, NAS and other substances
which influence pregnancy sustaining like 5�/� reduced pregnane
and androstane metabolites in fetal and maternal circulations are in
all probability controlled by the distribution of placental oxidore-
ductases.

The reason why the placental production was considered to
be independent of the fetal PregS might be the absence of cor-
relations between maternal and fetal progesterone although the
levels of estradiol (synthesized from the fetal DHEAS) also do not
correlate between mother and fetus. However, as reported in our
recent study [2], there are significant partial correlations for both
free and conjugated Prog20� between UV and MV and the cor-
relation between Prog20� and progesterone in MV (Table 1). In
addition, there are also significant partial correlations between
estrone polar conjugates in UV and unconjugated estradiol in MV
and a correlation between estrone and estradiol in MV (Table 2)
(our unpublished data).

Assuming that the distribution of placental oxidoreductase
isoforms controls the reductive and oxidative status of steroid
inter-conversions in maternal and fetal compartment, respectively,
the difference between oxidative fetal and reductive maternal
steroid metabolomic status should be the most apparent when
comparing blood from UV, containing placental steroids before
their further metabolism in other fetal tissues (mainly liver),
and MV. In accordance with the aforementioned assumption, the
blood from UV contains higher proportions of 20-oxo-steroids
like progesterone, 17-oxo-steroids (e.g. estrone and DHEA),

3-oxo-steroids like 5�/�-DHP and 3�-hydroxysteroids (isopreg-
nanolone and epipregnanolone), while maternal venous blood
contains higher proportions of 20�-hydroxysteroids like 20�-
dihydroprogesterone, 17�-hydroxysteroids such as estradiol and

between estrone (E1), estrone polar conjugates (E1C), estradiol (E2), and estradiol
earson’s and partial correlations (with adjustment of all variables in the correlation

l, respectively.
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ubital vein (MV) and in amniotic fluid (AF) in preterm and normal labor. The draw
n the frame of our recently published studies [2,3].

ndrostenediol and 3�-hydroxysteroids like neuroinhibiting allo-
regnanolone and pregnanolone (Fig. 11, our so far unpublished
ata). Furthermore, the levels of conjugated 3�-hydroxy-5�/�-
educed C-19 steroids in MV are pronouncedly higher (Fig. 7A–C,
ur so far unpublished data) than in the fetal circulation and amni-
tic fluid, while the 3�-isomer conjugated epiandrosterone do not
ignificantly differ between mother and fetus (Fig. 7B, our so far
npublished data).

Besides the neuroinhibiting effects in the CNS (which are prob-
bly counterbalanced by changed phosphorylation status of the
ABAA-r [10]) the higher levels of the 3�-hydroxysteroids in MV
ight be useful for pregnancy sustaining by reducing myometrial

ctivity via the voltage-gated K+ channels [105].
Gilbert Evans and colleagues reported 3�-hydroxysteroid

xidoreductase-mediated turnover of 5�- and 5�-DHP to their
etabolites allopregnanolone and pregnanolone. In the mater-

al circulation, between the 28th and 38th week of gestation,
decrease of allopregnanolone and increase of pregnanolone

ccurred [26]. On the contrary, our data showed a consistent

ecrease in both allopregnanolone/5�-DHP and pregnanolone/5�-
HP ratios between the 28th and 41st week of gestation (Fig. 11E
nd F, our so far unpublished data). In addition, we have
ecorded a slight but significant decrease even in the allopreg-
anolone/isopregnanolone ratio (Fig. 11G, our so far unpublished
rms in the plasma from the umbilical artery (UA), umbilical vein (UV) and maternal
nd symbols are the same as for Fig. 2. These so far unpublished data were obtained

data). Considering the enzyme distribution in placenta, these
results indicate increasing activity of placental and perhaps also the
liver HSD17B7 in late pregnancy. The data also points to decreasing
synthesis of neuroinhibiting GABA-ergic steroids with advancing
gestation.

6. Conclusions

The data available in the literature including our recent
findings and new unpublished data indicate increasing proges-
terone synthesis that is accompanied by increasing catabolism
with approaching parturition. The data also confirms declin-
ing production of pregnancy sustaining 5�-pregnane steroids.
These substances provide uterine quiescence in late pregnancy.
There is also an increasing sulfation of neuroinhibiting and preg-
nancy sustaining steroids with approaching term. In contrast to
the established concept considering LDL cholesterol as the pri-
mary substrate for progesterone synthesis in pregnancy, our data
demonstrates the functioning of alternative mechanism for pro-

gesterone synthesis, which is based on the utilization of fetal
pregnenolone sulfate for progesterone production in placenta.
Close relationships were found between localization of placental
oxidoreductases and consistently higher levels of sex hormones,
neuroactive steroids and their metabolites in the oxidized form
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